Integral elements of K-theory and products of modular curves II

نویسنده

  • A J Scholl
چکیده

We discuss the relationship between different notions of “integrality” in motivic cohomology/K-theory which arise in the Beilinson and Bloch-Kato conjectures, and prove their equivalence in some cases for products of curves, as well as obtaining a general result, first proved by Jannsen (unpublished), reducing their equivalence to standard conjectures in arithmetic algebraic geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yet Another Application of the Theory of ODE in the Theory of Vector Fields

In this paper we are supposed to define the θ−vector field on the n−surface S and then investigate about the existence and uniqueness of its integral curves by the Theory of Ordinary Differential Equations. Then thesubject is followed through some examples.

متن کامل

Integral elements in K-theory and products of modular curves

This paper has two aims. The primary one is to clarify the relation between results of Beilinson [1] and Flach [7]. We begin by briefly recalling the relevant parts of their papers. Suppose S is a connected smooth projective surface over Q. Beilinson’s conjectures relate the motivic cohomology groups H i M(S,Q(n)) = K (n) 2n−i(S) of S and the L-function of the motive h(S) at s = n. In what foll...

متن کامل

$C$-class functions on common fixed point theorems for weak‎ ‎contraction mapping of integral type in modular spaces

‎In this paper‎, ‎we use the concept of $C$-class functions introduced‎ ‎by Ansari [4] to prove the existence and uniqueness of‎ ‎common fixed point for self-mappings in modular spaces of integral‎ ‎inequality‎. ‎Our results extended and generalized previous known‎ ‎results in this direction‎.

متن کامل

Fixed point theorem for non-self mappings and its applications in the modular ‎space

‎In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998